金属3Dプリンターとは?懸念は強度?従来の製造法との違いを解説 | XMAKE

金属3Dプリンターとは?懸念は強度?従来の製造法との違いを解説 | XMAKE

金属3Dプリンターは、複雑な部品を高精度で製造する革新的技術です。しかし、造形の強度に関する懸念もあります。従来の切削加工や鋳造と比較して、形状の自由度が高く、設計変更が容易です。この文章では、金属3Dプリンターと従来の製造法の違いを詳しく解説し、それぞれの利点と適用範囲について説明します。

 

XMAKE_JP_metal-3D-printing_Featured-Image.webp

金属3Dプリンターとは?

金属3Dプリンターは、デジタル設計データを直接利用して金属部品を製造する積層造形技術です。CADデータを基に、層ごとに金属材料を積み重ねて製品を作成します。主な造形方式には、粉末床溶融結合(SLM、EBM)、指向性エネルギー堆積(DED)、バインダージェットがあります。これにより、複雑な構造の部品を高精度かつ効率的に製造することが可能で、航空宇宙、自動車、医療などの分野で広く活用されています。

XMAKE_JP_metal-3D-printing_01.webp

金属3Dプリンターの造形方式

1.粉末床溶融結合(PBF )

金属粉末を薄く敷き、レーザー(SLM)や電子ビーム(EBM)を照射することで溶融させ、層ごとに固化させる方式です。代表的な手法に、選択的レーザー溶融(SLM)や電子ビーム溶融(EBM)があります。

XMAKE_JP_Power-Bed-Fusion.webp

2.指向性エネルギー堆積(DED)

金属粉末やワイヤーを供給し、レーザーや電子ビーム、プラズマアークで溶融させながら堆積する方式です。特に、大型部品の修復や追加加工に適しています。

XMAKE_JP_Direct-Energy-Deposition.webp

3.バインダージェット

粉末床にバインダー(接着剤)を噴射して層を固め、その後に焼結(サイニタリング)して最終的な強度を得る方式です。高い生産性が特徴です。

XMAKE_JP_Binder-Jet.webp

 

造形方式 メリット デメリット 主な用途
SLM、EBM ・高精度、高強度

・複雑な形状の製造が可能

・装置が高価

・製造速度が比較的遅い

・航空宇宙部品

・自動車部品

・医療機器

DED ・大型部品の修復が可能

・柔軟な材料選択が可能

・表面仕上げが粗いことがある

・複雑な形状の製造には向かない

・修復作業

・大型部品

・プロトタイピング

バインダージェット ・高い生産性

・多様な材料に対応可能

・焼結工程が必要

・強度が他の方式に比べて劣る場合がある

・ジュエリー

・鋳造用型

・試作部品

 

金属成形品の強度

 

金属3Dプリンター部品の強度はどうですか?

金属3Dプリンターの強度は近年大きく向上していますが、従来の製造方法と比較して一部の面で懸念が残ることがあります。例えば、選択的レーザー溶融(SLM)によって作られた部品は、密度が99.9%以上に達し、引張強度も従来の鍛造品と同等以上になることが多いです。しかし、内部に微小な気泡や不均一な構造が発生する可能性があり、これが部品の疲労強度に影響を与えることがあります。

航空宇宙産業では、GEのジェットエンジン用燃料ノズルが金属3Dプリンターで製造され、従来の製造方法に比べて5倍の耐久性と25%の軽量化を達成しました。このノズルは、20個の部品を1つに統合することで、溶接点を減らし、信頼性を向上させました。

一方で、自動車産業などで使用される高負荷部品では、依然として鍛造や鋳造などの従来の製造法が選ばれることがあります。これらの方法は、金属内部の均質性と強度が高く、極端な条件下でも安定した性能を発揮します。

 

金属成形品の強度をどうやって上がるのか?

 

  • 内部構造設計

ハニカム構造や格子構造を内部に設けることで、同等の重量でも高い剛性を実現できるのです。

例えば、ステンレス鋼の3Dプリント部品の引張強度は800 MPa以上に達することがあり、同等の鋳造品よりも20%以上高い強度を発揮します。また、チタン合金の3Dプリント部品では、積層方向の引張強度が800 MPa程度なのに対し、積層面内の強度は1,000 MPa以上に達することがあります。

  • 適切な後処理

適切な熱処理や表面処理などの後処理を行うことで、強度をさらに高めることができます。ステンレス鋼の3Dプリント部品では、熱処理を行うことで引張強度が1,200 MPaを超えることがあります。

このように、金属3Dプリンターは従来の加工方法を大きく上回る高い強度を実現できる技術であり、様々な産業分野での活用が期待されています。

XMAKE_JP_metal-3D-printing_02.webp

 

金属3Dプリンターはどんな金属が加工できるのか?

3Dプリンターで造形できる金属:

材質 特徴 主な用途
ステンレス鋼 ・耐食性

・耐久性

・医療機器

・食品加工機器

チタン合金 ・軽量

・高強度

・航空宇宙

・医療分野

アルミニウム合金 ・軽量

・熱伝導性

・ヒートシンク

・自動車部品

銅合金 ・電気

・熱伝導性

・電子機器部品
金合金 ・耐食性

・装飾性

・宝飾品

・電子機器の接点材料

コバルトクロム合金 ・高強度

・耐摩耗性

・人工関節などの医療機器
ニッケル合金 ・耐熱性

・耐食性

・ガスタービンの部品

XMAKE_JP_metal-materials.webp

 

金属3Dプリンターの特徴

 

  • 短納期、少量生産に適している

金属3Dプリンターは、設計データから直接製品を製造できるため、短期間での少量生産が可能です。
従来の製造方法と比べて、金型の作成や治具の準備などの工程が不要なため、製造リードタイムを大幅に短縮できます。

 

  • 複雑な形状の製造が容易

金属3Dプリンターは、CADデータに基づいて製造するため、従来の製造方法では困難だった複雑な形状の製品を容易に作ることができます。
内部構造の最適化や、組み立てが不要な一体成形など、新しい設計が可能になります。

 

  • カスタマイズ性が高い

金属3Dプリンターは、デジタルデータを直接製造に活用するため、製品のカスタマイズが容易です。
個別のニーズに合わせた製品を短期間で提供できるため、顧客満足度の向上につながります。

 

  • 材料の無駄が少ない

金属3Dプリンターは、必要な量の材料のみを使用して製造するため、従来の製造方法と比べて材料の無駄が少なくなります。
材料コストの削減や、環境負荷の低減につながります。

 

  • 製造現場の環境負荷が低い

金属3Dプリンターは、切削加工などの従来の製造方法と比べて、騒音や粉塵の発生が少ないため、製造現場の環境負荷が低くなります。
工場の環境改善や、作業者の安全性の向上にも寄与します。
これらの特徴から、金属3Dプリンターは少量生産や複雑形状の製造、カスタマイズ性の高い製品づくりに適していると言えます。

XMAKE_JP_metal-3D-printing_03.webp

従来の加工法との比較

項目 金属3Dプリンター 従来の加工法(切削加工、鋳造など)
強度 ・強度の高い部品が作れる

・内部に微小な気泡が生じることがあり、疲労強度に影響する場合がある

・鍛造や鋳造は一貫した内部構造と高い強度を持つ

・極端な条件下でも優れた性能を発揮できる

精度 ・高い精度で複雑な形状を製造可能 ・高精度の製品を製造可能

・形状の複雑さにより加工の難易度が上がることがある

内部構造 ・層ごとに積層するため、異方性(方向依存性)が発生することがある ・均一で一貫した内部構造を持ち、方向に依存しない強度を実現
製造時間 ・複雑な形状の部品でも短期間で製造可能 ・設計から製造までのプロセスが長い

・特に複雑な形状の場合に時間がかかる

コスト ・初期投資が高い

・複雑な部品や少量生産ではコスト効率が良い

・大量生産ではコスト効率が高い

・初期設計と金型製作に高いコストがかかる

材料対応 ・主に金属粉末やワイヤーが使用される

・材料の選択肢は増えているが特定の高性能材料に制限がある

・広範な金属材料が利用可能

・安価な材料も多く、選択肢が豊富

形状対応 ・複雑なジオメトリや内部構造を一度に造形でき、高いデザイン自由度を持つ ・複雑な形状の製造には、複数の工程や組み立てが必要で、デザインに制約が生じることがある
生産の柔軟性 ・短納期でのプロトタイピングや少量生産に適しており、オンデマンド製造が可能 ・大量生産に向いているが、型や治具が必要で、少量生産には不向き
無駄 ・必要な部分だけを造形するため、材料の無駄が少ない ・切削加工などでは材料の削りかすが多く、廃棄物が発生しやすい
表面仕上げ ・造形後に追加の表面処理や仕上げ作業が必要な場合があり、積層跡が目立つことがある ・高品質な表面仕上げが可能で、通常は後処理が少なくて済む
後処理 ・焼結、熱処理、機械加工などの後処理が必要になることがある ・鋳造や鍛造では後処理が比較的少なくて済む場合が多い

 

XMAKE_JP_metal-3D-printing_04.webp

まとめ

金属3Dプリンターは、複雑な部品を高精度で製造できる革新的な技術ですが、強度に関する懸念もあります。従来の切削加工や鋳造と比べて、形状の自由度が高く、設計変更が容易ですが、内部構造の均一性や耐久性に差が見られることがあります。これらの違いを理解し、用途に応じた最適な製造方法を選ぶことが重要です。

今回ご紹介した「金属3Dプリンター」は、 XMAKEでお見積もり可能です。気になる方、是非チェックしてください!

 

参考文献

・貴大塚. (2023, December 29). 【2024】金属3Dプリンターとは?選び方や価格相場 – BIM/CIM研. BIM/CIM研 – BIM/CIMの使い方や最新トピックスを分かりやすく発信(BIM/CIM Lab). https://bimcim-kenkyujo.com/3dprinter/kinzoku-3dprinter/

 

・葉冬森,楊釩,張大川,沈培良,呉磊,王倩倩, Dongsen, Y., Peiliang, S., Dachuang, Z., Fan, Y., Lei, W., & Qianqian, W. (2022, January 7). 3Dプリンターは従来の加工技術との違い. https://myfj.ijournals.cn/myfjsjyyj/article/html/20210422?st=article_issue

 

・金属3Dプリンタが生み出すアルミニウムの新機能 ~汎用元素の組み合わせで優れた高温強度を実現~. (n.d.). 名古屋大学研究成果情報. https://www.nagoya-u.ac.jp/researchinfo/result/2023/04/3d-1.html

電子機器製造における 3D ラピッドプロトタイピング技術のトップ 7 の方法 | XMAKE

電子機器製造における 3D ラピッドプロトタイピング技術のトップ 7 の方法 | XMAKE

イノベーションと精度が出会うラピッド プロトタイピング テクノロジーでエレクトロニクス製造の未来に飛び込みましょう。このダイナミックな分野は、スマートフォンからウェアラブルまで、電子デバイスの設計と製造方法を変えています。設計者を可能にする 7 つのラピッド プロトタイピング プロセスをご覧ください。前例のないスピードと複雑さでビジョンを実現します。エレクトロニクス製品開発の限界が常に押し広げられている世界を探索する準備をしましょう。工場の現場は、生産のハブであると同時にイノベーションの実験室でもあります。

レーザーベースおよびその他の光源ベースの成形技術

SLA や LOM などのレーザーベースおよび光源ベースの成形テクノロジーは、高出力レーザーを使用して材料を層ごとに硬化または切断します。これらの正確なプロセスにより、複雑で詳細な部品の作成が可能になり、ラピッドプロトタイピングや製造に最適です。エレクトロニクス。

1. 光造形 (SLA) によるラピッドプロトタイピング

Rapid-Prototyping-with-Stereolithography

ステレオリソグラフィー (SLA) と呼ばれる最先端の 3D 印刷法は、液体の感光性材料を紫外線 (UV) レーザーで硬化させ、このプロセスで材料の層を重ねて固化し、コンピューターによって 3 次元構造を作成します。制御されたスキャンプロセス。

SLA は非常に高いレベルの精度と詳細を実現できるため、複雑で壊れやすい電子部品の作成に最適です。DragonFly 2020 Pro は、多層の回路基板を作成できる Nano Dimension 製の 3D プリンターです。

SLA テクノロジーを使用して、この機械で導電性銀インクを使用して回路基板を作成し、非常に複雑な電気部品を非常に正確に作成できます。また、外注による長いリードタイムと高額なコストを回避することもできます。そして小ロット生産。

小型サイズと複雑さが非常に重要である高度な電子デバイスの成長は、このテクノロジーに依存しています。

2. 積層造形物製造 (LOM) によるラピッドプロトタイピングプロセス

Rapid-Prototyping-through-Laminated-Object-Manufacturing

ラミネート オブジェクト マニュファクチャリング (LOM) と呼ばれる積層造形法では、レーザーを使用して材料の薄いシートを切断し、積み重ねて接合して 3 次元のオブジェクトを作成します。

この技術は、非常に複雑で小さな特徴がたくさんあるものを作るのに特に適しています。最初のステップの 1 つは、金属、プラスチック、または紙の断面パターンを切断することです。その後、さらにシートを作成します。を最初の層の上に置き、接着剤または熱を使用して層を結合します。

LOM を使用すると、材料を有効に活用して、さまざまな肉厚の部品を作成できるため、FormLabs は、LOM テクノロジーを使用してカスタム設計のサウンドチャンバーを備えたスピーカーの製品ラインを作成しました。アクリル樹脂を積み重ねてチャンバーを作ります。

3D プリントされたチャンバーの音響特性はカスタマイズされているため、作成されたスピーカーの音質は LOM プロセスにより、従来の方法で使用した場合よりも 25% 少ない材料で作成できるようになったと述べています。これは、いかに有用であるかを示しています。新しい電子製品を製造するときに効率的な LOM を実現できます。

3. 選択的レーザー焼結 (SLS) を使用したラピッド プロトタイピング

Rapid-Prototyping-using-Selective-Laser-Sintering

選択的レーザー焼結 (SLS は積層造形法) では、ナイロン、金属、ガラスなどの粉末材料を高出力レーザーと組み合わせて固体の塊を形成します。

このプロセスでは、特に 3D モデルに基づいて金属粉末の薄い層を溶かすことにより、完全な 3D になるまでオブジェクトを層ごとに構築します。これは、後処理をほとんど行わずに複雑な形状や小さなフィーチャを作成できるため、SLS は次の用途に最適です。プロトタイプを作成し、非常に複雑な電子部品を作成します。

報道によると、ブガッティは、従来の製造方法よりも40%軽量化されたSLSテクノロジーを使用して、ドローンの構造的安定性を向上させる複雑な内部形状を追加しました。そして空力性能。

さらに、SLS によりドローン部品を数週間ではなく数日で製造できるようになり、リードタイムが大幅に短縮されたと報告しています。これは、SLS がハイテクエレクトロニクスの製造にいかに有用で効率的であるかを示しています。

4. 形状蒸着製造 (SDM) におけるラピッドプロトタイピング

Rapid-Prototyping-in-Shape-Deposition-Manufacturing

Shape Deposition Manufacturing (SDM) と呼ばれる積層造形の高度な方法は、選択的レーザー焼結 (SLS) と同様に機能しますが、プロセスを改善するための重要な変更がいくつかあります。

SDM は、より小さな粉末とより速い印刷速度を使用して、表面をより滑らかにし、より高い解像度で印刷します。これは、より微細な粉末を使用することで、より優れた層の密着性とより高密度な部品を実現できるため、厳しい公差を持つ複雑な電気部品の製造に特に適しています。機能テストと部品の最終パフォーマンスに役立ちます。

SDM テクノロジーを利用する Nano Dimension の DragonFly 2020 Pro 3D プリンタは、導電性材料と誘電性材料の両方を同時に追加することができ、複雑な非常に正確な回路パターンを作成できます。3 次元プリント エレクトロニクスは、このプリンタの回路基板製造能力以来、大きな進歩を遂げてきました。 100マイクロメートルほどの小さな特徴を備えています。

SDM は、動作するデバイスに直接統合できる複雑な電子部品の作成を可能にするため、電子製品の製造分野を改善する能力を備えています。

ジェットベースの成形技術

FDM や 3DP などのジェットベースの成形技術は、加熱ノズルを使用して材料を押し出し、堆積させ、高度な精度と設計の柔軟性で複雑な形状やカスタム電子部品を製造することに優れています。

5. 溶融堆積モデリング (FDM) によるラピッドプロトタイピング

Rapid-Prototyping-by-Fused-Deposition-Modeling

積層造形の一般的な方法は、熱可塑性フィラメントを加熱して金型から押し出すことによって 3 次元の物体を構築し、必要な形状を作るために FDM プリンターで材料の薄い層を配置します。お互いの上にあります。

FDM は、複雑な形状や幅広い材料の物体を作成できるため、広く知られています。FDM は、安価で使いやすいため、プロトタイピングや少数の電気部品の作成に特に適しています。

MakerBot は、FDM テクノロジーを使用して、ルーター、メディア プレーヤー、その他の電子機器用の丈夫で軽量なケースの製品ラインを製造しました。ポリ乳酸 (PLA) は、電子製品の外観に合わせて簡単に色付けしたり仕上げたりできる、強力で曲げやすい熱可塑性プラスチックです。 、これらのケースを作成するために使用されます。

MakeBot によると、同社の FDM プリント ケースは、構造的に健全でありながら、標準的な射出成形ケースより 20% 軽量です。これにより、ガジェットの持ち運びが容易になるだけでなく、使用する材料が減り、製造プロセスがより環境に優しいものになります。 

6. 3 次元印刷 (3DP) によるラピッド プロトタイピング

Rapid-Prototyping-by-Fused-Deposition-Modeling

熱溶解積層法 (FDM) と同様に、3 次元印刷 (3DP) は、プラスチック フィラメントを加熱して押し出すことによって 3 次元のものを作成する積層造形法です。

材料の層を重ねて希望の形状を作成するのが 3DP のプロセスの特徴であり、高レベルの精度で複雑な形状を作成できるため、複雑な部品を作成するのに適しています。このテクノロジーにより、各顧客のニーズに合わせてエレクトロニクス製品の仕組みを変えることも可能になります。

Shapeways は 3D プリント技術を利用して、さまざまな色、質感、さらにはスタンドやカード ホルダーなどの内蔵アクセサリを備えたカスタムの電話ケースを作成および注文する方法を提供しています。Shapeways によると、同社の 3D プリント ケースは通常のものより最大 30% 軽量です。ケースを使用すると、持ち運びが簡単になり、ユーザーにとってより快適になります。

それに加えて、3DP テクノロジーのカスタマイズ オプションにより、顧客は自分のスタイルに合ったケースを作成でき、3DP がカスタム電子アクセサリを提供できることを示しています。

7. 多相ジェット蒸着 (MJD) によるラピッドプロトタイピング

Rapid-Prototyping-via-Multiphase-Jet-Deposition

多相ジェット蒸着 (MJD) は、固体材料と溶融材料の噴射を使用して、さまざまな物理的特性を持つ部品を製造する新しい部品製造方法です。

このテクノロジーを使用すると、センサーや導電経路などの機能を組み込んだ電子製品を 1 つの製造プロセスで製造でき、メーカーは複数の材料から複雑な部品を製造できるため、最終製品の性能と能力が向上します。

Voxel8 は、MJD テクノロジーを通じて、フレームワークに直接組み込まれた導電性材料を備えた一連のセンサーを作成しました。これらのセンサーをスマート テクノロジーやモノのインターネット (IoT) ガジェットなどのさまざまな種類の電子機器に組み込んで、機能を向上させたり、実行したりすることができます。もっと。

Voxel8 は、MJD で印刷されたセンサーは、センサーの構造に電気材料を正確に組み込んでいるため、通常のセンサーよりも 50% 感度が高いと述べています。これは、MJD がより多くの機能とより優れた性能を備えた電子製品を製造できる能力を備えていることを示しています。 。

要約すると、ラピッド プロトタイピング テクノロジの 7 つのプロセスは、電子製品の製造方法を変えています。これらのテクノロジは、SLA から MJD に至るまで、さまざまな方法で作成されています。これらのラピッドプロトタイピング手法を影響を与えない方法で組み合わせることが、イノベーションをさらに加速し、製品をより複雑にし、市場投入までにかかる時間を短縮することを約束しています。これにより、次世代のエレクトロニクスがよりスマートになるだけでなく、より効率的かつ持続可能な方法で計画および製造されるようになります。

よくある質問

1. 粉末床溶融とは何ですか?

パウダーベッドフュージョンは、高出力レーザーを使用してチタンなどの粉末材料の材料層を選択的に融合することによって物体を作成する積層造形プロセスです。

2. 選択的レーザー溶解 (SLM) はどのように機能しますか?

選択的レーザー溶解は、粉末床融合プロセスの一種で、高出力レーザーを使用して金属粒子を層ごとに融合させ、内部格子構造のような複雑な形状を作成します。

3. 積層造形において一度に 1 つの層が重要なのはなぜですか?

3D オブジェクトを一度に 1 層ずつ印刷すると、従来の方法では達成が困難であった複雑な形状や内部格子構造を作成できます。

4. 積層造形における表面仕上げはどの程度重要ですか?

積層造形における表面仕上げは、特に精度と耐久性が重要な産業環境において、部品の最終品質を決定する上で重要な役割を果たします。

5. 一部の積層造形プロセスでサポート構造が必要になるのはなぜですか?

複雑な形状を伴う積層造形プロセスでは、印刷中の部品の安定性を確保し、変形を防ぐためのサポート構造が必要になる場合があります。

6. 積層造形で高出力レーザーを使用する利点は何ですか?

積層造形における高出力レーザーにより、粉末材料の迅速な溶融が可能になり、複雑な形状の部品をより迅速に製造できるようになり、製造プロセスの効率が向上します。

参考文献

1. Rapid prototyping technology – MBA Think Tank Encyclopedia. (n.d.). https://wiki.mbalib.com/wiki/%E5%BF%AB%E9%80%9F%E6%88%90%E5%BD%A2%E6%8A%80%E6%9C%AF

2. Principle characteristics and process methods of laser rapid prototyping technology. (n.d.). https://www.laserfair.com/yingyong/201204/19/56671.html

3. New Advances in Metal Powder-Based Laser Rapid Prototyping Technology – Hatch Institute. (n.d.). https://v.haizol.com/article.do?rid=349

4. Common techniques and applications of laser rapid prototyping. (n.d.). https://www.laserfair.com/news/201702/28/63410.html

免責事項

XMAKE のプラットフォームの記事は情報提供を目的としており、デジタル製造における当社の専門知識を反映しています。ただし、一部の情報は変更される可能性がありますので、XMAKE は特定のアプリケーションについては責任を負いません。このコンテンツについては、ご理解と遵守をお願いいたします。

ラピッドプロトタイピングが自動車業界にもたらす 8 つの変化 | XMAKE

ラピッドプロトタイピングが自動車業界にもたらす 8 つの変化 | XMAKE

前書き

Automotive Parts

自動車業界の成長が加速するだけでなく、完全に変化する世界を想像してみてください。自動車ビジネスが大きく変化するこのテクノロジーを使用すると、計画プロセスが迅速化されるだけでなく、ラピッド プロトタイピングの時代が到来します。また、ラピッドプロトタイピングは、アイデアの段階から組み立てラインに至るまで、自動車の設計、テスト、市場投入の方法を変えることになります。

自動車ビジネスでラピッド プロトタイピングが使用されている 8 つの興味深い方法を見ていきます。それぞれの例は、イノベーションの力と、時間とコストを節約する方法を見つけることがいかに重要であるかを示しています。 -エッジテクノロジーは自動車業界の進歩を加速し、将来の人々の移動方法を変えます。

ラピッドプロトタイピングとは何ですか?

Rapid-Prototyping_Manufacturing

3D プリンティングまたは積層造形とも呼ばれるラピッド プロトタイピングは、部品を 1 つのレイヤーで構築することで、デジタル プランから物理プロトタイプをより迅速に作成する新しい方法です。製品開発をスピードアップし、コストを削減し、設計をより柔軟にしたいと考えている企業にとって、すべてが一度に変わります。

ラピッド プロトタイピングを使用すると、設計者はアイデアを迅速にテストして改善し、最終製品が大規模に作成される前に品質と性能の基準を満たしていることを確認できます。さまざまな種類のラピッド プロトタイピング ツールをさまざまな用途に使用し、さまざまな種類で動作させることができます。

光造形 (SLA) では、液体樹脂を硬化させるために紫外線レーザーを使用します。 溶融堆積モデリング (FDM) では、熱可塑性プラスチック繊維を機械から押し出すことによって層を作成します。 選択レーザー焼結 (SLS) では、粉末材料を融合するためにレーザーが使用されます。同じ理由で電子ビーム溶解 (EBM) にも使用されますが、金属粉末の方が効果的です。

これらの方法は、金属からプラスチックまで、さまざまな材料に使用できます。この方法は、強度、柔軟性、熱特性などのプロトタイプのニーズに基づいて選択されます。

ラピッドプロトタイピングの利点

Logo of rapid prototyping technology

自動車業界では、ラピッドプロトタイピングが重要です。この方法を使用すると、自動車メーカーは実際に動作するフルサイズのモデルとプロトタイプを迅速に作成できるため、新モデルの市場投入にかかる時間が大幅に短縮されます。開発プロセスの早い段階で設計上の欠陥を改善します。

新しい技術は難しい形状の部品を製造できるため、古い製造方法では不可能だったかもしれない新しい製品設計のアイデアへの扉が開かれます。

また、高速プロトタイピングにより、設計の検証プロセスがスピードアップされ、自動車の走行性、安全性、外観が向上します。また、無駄を削減し、軽量の素材を使用することで、地球に優しい実践も促進されます。燃料を節約し、汚染を減らします。

一般に、高速プロトタイピングは自動車ビジネスにとって有益であり、急速に変化し、新しいアイデアを生み出す市場で企業が優位に立つのに役立ちます。

自動車産業におけるラピッドプロトタイピングの 8 つのアプリケーション シナリオ

これら 9 つの自動車アプリケーション ケースを通じて、ラピッド プロトタイピングが業界をどのように変革しているかを観察できます。

1. コンポーネント製造におけるラピッドプロトタイピング

3D printed automotive water pump housing

ラピッドプロトタイピング技術は、自動車業界にとって非常に重要です。RP を使用すると、自動車の走行性を向上させ、ガソリンの使用量を減らすために必要な、軽量で適切に設計された部品を製造できるからです。

BMW グループは、BMW i8 プラグイン ハイブリッド スポーツ カーのウォーター ポンプ ハウジングをより複雑にするために、製造プロセスに 3D プリントを追加しました。これらの 3D プリント部品の製造に使用されているアルミニウム金属は、他の素材よりも軽いだけでなく、より強く、耐熱性にも優れています。

BMW はラピッド プロトタイピングにより、通常の製造方法では不可能な格子状のウォーター ポンプ ハウジングの内部構造を作成できました。これは、部品の有用性をまったく損なうことなく 25% 軽量化されたことを意味します。使用する燃料も少なくなり、CO2の排出も少なくなります。

3D プリンティングのダイレクト デジタル製造プロセスにより、この部品の作成にかかる時間が数か月からわずか数日に短縮され、開発サイクルが短縮され、新しいアイデアをより早く思いつくことが可能になりました。

2. コンセプトモデル製作のためのラピッドプロトタイピング

LM3D Swim

先進的な 3D プリンティングを使用してコンセプト モデルを迅速に作成することは、現在、自動車ビジネスの重要な部分となっています。これは、車体設計の研究と成長にとって、デザイナーのアイデアをより迅速かつ自由に実現することが可能になります。 。

アメリカの自動車会社 Local Motors が、3D プリントを使用して新しい方法で部品を製造できることは人々に知られています。彼らの作品である「LM3D Swim」は、ラスベガスの SEMA ショーで展示された初の 3D プリント車でした。

LM3D Swim のボディとフレームは、カーボンファイバーで強化された熱可塑性プラスチックで 3D プリントされており、この方法を使用することで、ローカル モーターズは、機能的で、外観がユニークでクリーンなアイデア車を迅速に作成することができました。

3D プリントにより、計画プロセスがスピードアップされ、通常のツールでは作成およびテストが困難な複雑な曲線や形状を作成できるようになりました。

 3. プロトタイプ開発におけるラピッドプロトタイピング

3D printed automotive cooling system

ラピッド プロトタイピングは、アイデアの最初のスケッチから完全に動作するプロトタイプに至るまで、自動車開発のあらゆる段階をサポートする多面的なプロセスです。このテクノロジーの一般的な用途の 1 つは、ブガッティ ディーヴォ スペシャル エディション トラック スーパー スポーツ カーの作成です。ブガッティはラピッドを使用しました。これにより、車は厳格なエンジニアリング テストに合格し、ショー カーとしての外観を完成させることができました。車の複雑な冷却システムと高度な空力部品。

これらの部品は非常に正確に作られ、昔ながらの方法で作るよりもはるかに短い時間で作られました。このテクノロジーの高速フィードバック ループにより、何度も設計変更を行うことが可能となり、ディーヴォがブガッティの要求を満たすことが確実になりました。スピードに対する高い基準。

また、同社は、見込み顧客や自動車プレスに Divo の美しいデザインと最先端のエンジニアリングを見せることができるよう、実物大のショーカー プロトタイプの製作を加速しました。これにより、製作にかかる時間が短縮されただけでなく、しかし、それは道具や物を作るためのコストも削減します。

ブガッティ ディーボの開発ではラピッド プロトタイピングがうまく活用され、この技術がイノベーション サイクルの短縮とプロトタイプ車両のより効率的な生産を可能にし、自動車業界にどのような変化をもたらしたかを示しています。

4. 工具および治具製造のためのラピッドプロトタイピング

3D printed metal injection molds

3D プリンティングは、自動車業界のツールや備品の製造において重要な要素となっており、物品を迅速かつ正確に製造する方法を提供しており、GM はそのプロセスで使用されるツールの製造に 3D プリンティングを使用しています。 GM は 3D プリンターを使用して、シボレー コルベットのような自動車を組み立てるための複雑な形状の金属工具や付属品を作成し、工具の作成にかかる時間を数か月からわずか数日に短縮することができました。 3Dプリントを使用して。

この短縮された生産スケジュールにより、車両の設計変更や高出力ニーズへの迅速な対応が容易になり、標準的なツールのコストも数十万ドルかかる場合がありますが、3D プリント ツールのコストはそのほんの一部です。この技術により、組立ラインの過酷な条件にも耐えられるよう、より硬く軽量な工具を製造することも可能になります。

3D プリントされたツールの品質は、通常の方法で作成されたツールと同等以上です。この高レベルの精度と耐久性により、職場でより多くのものを簡単に作成し、より効率的に作業できるようになりました。

さらに、金属 3D プリントは非常に柔軟であるため、以前は不可能だった特定のツールを 1 回限りまたは小ロットで作成することが可能になりました。

5. 自動運転車用コンポーネントのラピッドプロトタイピング

3D printed Body Control Module

自動運転車革命は、安全で有用な部品を製造するラピッド プロトタイピング テクノロジーによって推進されています。これは、電気自動車および自動運転車のリーダーであるテスラが、ラピッド プロトタイピングを使用して自動運転車の部品を構築およびテストする方法です。センサー ハウジング、LiDAR 統合システム、高度な制御モジュールなどの自動車の運転において、テスラは 3D プリンティングやその他の形式の付加製造を利用して、厳格な性能と安全基準を満たす必要がある複雑な部品のプロトタイプや反復を迅速に作成できます。

この技術により、通常の方法では作成できない複雑な形状のユニークな部品を作成することが可能になります。ラピッドプロトタイピングのプロセスは、センサーを見つけたり、最新の電子機器を自動車の構造に追加したりするのに役立ちます。

迅速な設計により、自動運転車の部品の開発とテストが迅速化され、より迅速な技術的対応とイノベーションのサイクルが可能になり、ミスのリスクが軽減されます。テクノロジーが進歩するにつれて、ラピッドプロトタイピングは自動運転車をよりスマートで安全にするのに役立ちます。

6. 試作製造におけるラピッドプロトタイピング

3D printed automotive suspension

従来の製造プロセスと比較して、ラピッド プロトタイピングは自動車のプロトタイプや部品を作成するための成功した費用対効果の高い方法であることが示されています。BMW は、自動車部品のプロトタイプを作成するために 3D プリンティングを使用して、ブレーキ マウントや部品の実用サンプルを作成しています。このプロセスにより、BMW の開発プロセスが短縮され、従来の製造方法と比較して、アイデアから実際の部品を完成させるまでにかかる時間を最大 90% 短縮できます。この機能は、新しいアイデアがどの程度機能するかを確認するのに特に役立ちます。

また、このテクノロジーにより、特定のタイプや顧客のニーズに合わせて特別に作られた部品の作成も容易になります。BMW では、高価な工具を購入する必要がなく、材料の無駄も少ないため、多額の費用を節約できます。従来の方法よりもはるかに少ないコストでサンプルを作成できるため、コストが節約され、設計をより頻繁に変更できるため、製品の機能が向上し、品質が向上します。

自動車業界の変化に伴い、自動車部品の製品開発プロセスにおいてラピッドプロトタイピングの重要性が高まり、現場のさらなる革新と効率の向上につながります。

7. 革新的な設計をサポートするためのラピッドプロトタイピング

Olli of Local Motors

ラピッドプロトタイピング技術は、デザイナーがより少ないリスクで新しいアイデアを試せるため、自動車業界で新しいアイデアを生み出すのに最適です。Local Motors は、この技術を使用して新しい車のアイデアを生み出すことで知られています。自動で動く電動シャトル「Olli」は、通常の方法では作るのが難しいユニークなデザインを持っています。Olli のデザインには、車内の設定を簡単に変更できる 3D プリントパーツが含まれています。さまざまな乗客のニーズや要望に応えます。

Local Motors は、ラピッド プロトタイピングを使用してさまざまな設計バージョンを迅速にテストし、最終製品を改善するためのフィードバックを得ることができました。この方法により、何かを構築するのにかかる時間を短縮できるだけでなく、テストされていない設計の大量生産に伴う財務上のリスクが軽減されます。社内で実用的なプロトタイプを作成できるため、設計者は事実に基づいて意思決定を行うことができ、最終的な設計が技術的なニーズと顧客の基準の両方を確実に満たすことができます。

この方法は、プロトタイピングを迅速に行うことで、設計プロセスをより柔軟にリスク回避することができ、それが自動車の設計と製造における新しいアイデアにつながることを示しています。

8. 生産ツールの製造におけるラピッドプロトタイピング

3d printed automotive engine block

3D プリンティングは、少量のバッチを迅速かつ安価に製造できるようにすることで、自動車業界における生産ツールの製造方法を変えています。BMW グループでは、従来、エンジン ブロックの製造に使用されていた水に溶解するコアの製造に 3D プリンティングを使用しています。 、これらのコアは多大な労力と多くの時間とリソースを必要とするプロセスを使用して作成されますが、BMW は 3D プリントを使用することで、これらの部品の作成にかかる時間を数週間から数日に短縮しました。鋳造プロセスが完了した後、水で簡単に分解できる材料で作られているため、複雑なディテールがすべて残ったままになります。これにより、車の製造にかかる時間が短縮されるだけでなく、以前よりも複雑で効率的な形状のエンジンを構築できます。

BMW は、3D プリントに加えて、自動車の性能をさらに向上させるために、強度が高く軽量であることで知られるカーボンファイバー部品も使用しています。BMW はこれらの専用ツールを社内で製造できるため、多くの制御を行うことができます。これは、製造プロセスがより効率的になり、車がより早く市場に投入されることを意味します。

テクノロジーが向上し続けるにつれて、3D プリントはより多くの自動車ツールに使用されるようになるでしょう。これにより、設計者はさらに自由になり、製造プロセスがより効率的になります。

結論

結論として、ラピッドプロトタイピング技術は、自動車産業の現在と将来にとって非常に重要です。技術が向上するにつれて、製品の製造にかかる時間を短縮し、品質を向上させ、より早く市場に投入することで競争力を高めることができます。より複雑でカスタマイズされた車の製造が可能になることで、自動車の製造方法がさらに変わる可能性が高くなります。今後、自動車業界は、さらなる革新と効率の向上につながるラピッドプロトタイピングにさらに依存することになるでしょう。私たちが現在直面している問題を克服し、この革新的なテクノロジーを最大限に活用するには、材料科学、プロセス自動化、デジタル設計の進歩を続ける必要があります。

よくある質問

1. 機能プロトタイプはどのように層ごとに作成されるのですか?

機能プロトタイプは、3D プリンティングや積層造形などのラピッド プロトタイピング技術を使用して層ごとに作成されます。これにより、正確でカスタマイズ可能なデザインを迅速に作成できます。

2. 従来のプロトタイピング方法とは何ですか?

従来のプロトタイピング方法とは、ラピッド プロトタイピングが登場する前に使用されていた古い技術を指します。これらの方法には、プロトタイプの作成にモデルを手作りしたり、機械加工したり、金型を使用したりすることが含まれます。

3. プロトタイピング プロセスにおけるエンジニアとデザイナーの役割は何ですか?

エンジニアとデザイナーは、プロトタイプの概念化、設計、テストを担当し、その専門知識が革新的で機能的な製品の開発に役立つため、プロトタイピング プロセスにおいて重要な役割を果たします。

4. ラピッド プロトタイピング プロセスはどのように機能しますか?

ラピッド プロトタイピング プロセスでは、3D プリントなどの技術を利用して機能するプロトタイプを迅速に作成し、製品の設計と製造を最適化するためにテストおよび改良が行われます。

5. ラピッド プロトタイピングで使用されるさまざまな技術は何ですか?

ラピッド プロトタイピングで使用される技術には、3D プリンティング、ステレオリソグラフィー、選択的レーザー焼結などがあります。

参考文献

1. BMW Wants to Mass Produce 1 Million 3D Printed Parts in a Decade. (n.d.). http://www.caam.org.cn/search/con_5222035.html

2. 3D Printing 101: How to 3D Print a Car. (n.d.). SimpNeed. http://www.simpneed.com/news/297ebe0e5750d5d80157620807b80044

3. Bugatti’s latest 3D printing technology_Car Family_Discover Car Life_Automotive House. (n.d.). https://chejiahao.autohome.com.cn/info/8130783/

4. Tesla’s integrated die-casting technology: How to use 3D printing and create affordable electric cars? _Car Home_Discovering Car Life_Car Home. (n.d.). https://chejiahao.autohome.com.cn/info/13200706

免責事項

XMAKE のプラットフォームの記事は情報提供を目的としており、デジタル製造における当社の専門知識を反映しています。ただし、一部の情報は変更される可能性がありますので、XMAKE は特定のアプリケーションについては責任を負いません。このコンテンツについては、ご理解と遵守をお願いいたします。

航空宇宙産業がラピッドプロトタイピングと 3D プリントを活用する 6 つの方法 | XMAKE

航空宇宙産業がラピッドプロトタイピングと 3D プリントを活用する 6 つの方法 | XMAKE

航空宇宙産業がラピッドプロトタイピングと 3D プリントを活用する 6 つの方法

前書き

Aerospace-Components

複雑なコンポーネントが 3D プリンターの「印刷」コマンドと同じくらい簡単に作成できる未来の航空宇宙製造プロセスを想像してみてください。この先進的なテクノロジーは、デジタル アイデアを変換することで航空宇宙分野の状況を一変させます。物理コンポーネントの詳細を把握できるため、開発時間とコストが削減されます。

このテクノロジーを使用すると、航空機会社は設計を迅速に変更し、より多くの可能性を実現し、市場の変化に適応することができ、物事をよりスムーズに進め、現場の進歩を加速させることができます。

さまざまなタイプの高速プロトタイピング技術、その利点、航空宇宙での使用方法、および将来発生する可能性のある問題について説明します。これは、この技術が成長にどのような影響を与えたかを理解するのに役立ちます。フィールドの。

航空宇宙産業におけるラピッドプロトタイピングの種類と利点

CAD drawings of aircraft engines

ラピッドプロトタイピング技術の種類

ラピッド プロトタイピング (RP) は、3D デジタル モデルからパーツを一度に 1 層ずつ構築することで、製造プロセスを高速化する一連のテクノロジーです。

紫外線レーザーを使用して液体樹脂を固体の物体に硬化させるステレオリソグラフィー (SLA) は、最も一般的な方法の 1 つです。もう 1 つの一般的な方法は、熱可塑性樹脂をノズルから押し出して 1 層ずつ蒸着する溶融堆積モデリング (FDM) です。選択的レーザー焼結 (SLS) では、レーザーを使用して粉末材料を接合し、電子ビーム溶解 (EBM) と同様に、電子ビームで金属粉末を溶解します。

これらの技術は、さまざまな材料や用途のニーズを満たすことができ、航空機部品の複雑な機械の設計者や製造者にさらなる選択肢をもたらします。

ラピッドプロトタイピング技術の利点

ラピッド プロトタイピングには、特に航空宇宙ビジネスに役立つ多くのメリットがあります。まず、コンピュータ支援設計 (CAD) ソフトウェアの助けを借りて、RP はアイデアから物理的なプロトタイプまでの時間を短縮し、作成プロセスをスピードアップします。新製品の市場投入までの時間が競争上の利点となる分野では、このスピードアップは非常に重要です。

RP では、通常のツールでは作成できない複雑な形状を作成でき、必要なときにのみ高品質の製品を作成できるため、廃棄物や保管コストが削減されます。より多くの費用をかけずに、フィードバックを追加したり、より良いアイデアを作成したりすることが簡単になります。

最後に重要なことですが、より優れた材料を使用し、より優れた機能を実現することで、より強力で軽量な、より少ない燃料を使用できる船を作ることができます。これは、性能と持続可能性を重視する航空機にとって非常に良いことです。

航空宇宙製品におけるラピッドプロトタイピングの 6 つの具体的な応用例

1.チタン合金航空宇宙製品のラピッドプロトタイピング

Titanium-Alloy-Aerospace-Components

北京航大学の研究者らは、ラピッドプロトタイピングの一種であるチタン合金精密熱間成形技術を開発することにより、航空宇宙工学の分野で大きな前進を遂げた。この新しい方法では、チタン金属から複雑な航空宇宙部品を慎重に製造するための高度なレーザー材料加工が使用されている。飛行機を作るのに必要なもの。

同大学の研究は主に、現在の航空機の安全性と性能にとって最も重要な、これらの部品の寿命を延ばし、より複雑にすることに取り組んでおり、一例として、彼らはこの技術を使用して、翼の形状を維持するだけでなく、複雑な翼の接合部を作ることに成功した。飛行機の構造は丈夫でありながら軽量です。

この大きな前進は、企業がより信頼性と効率性の高い航空機を製造できるようにすることで航空宇宙産業を変える可能性があり、それが最終的には航空技術の進歩に役立つことになるでしょう。

2. 航空エンジン部品の 3D プリントにおける航空宇宙プロトタイピング

3D Printed Fuel Nozzles for Aircraft Engines

3D プリンティングの一種であるラピッド プロトタイピングは、航空機エンジンの製造方法を変えつつあり、現在、この技術は、ゼネラル エレクトリック社のロケット エンジンであっても、燃焼タンクやガス発生器など、これらのエンジンの複雑な部品の製造に使用されています。航空業界の大手企業である同社は、3D プリンティングを使用して LEAP エンジン用の燃料ノズルを製造しています。

これらのノズルは、微細な金属粉末からレーザーで作られており、耐久性と効果が高いだけでなく、通常のノズルよりも軽量であるため、燃料の使用と汚染を大幅に削減できます。

この製造方法により、従来の製造方法よりも複雑なパターンを作成することも可能になりました。このため、3D プリンティングは将来の航空機において非常に重要となり、エンジンの信頼性が向上し、より優れたものになるでしょう。

3. 超音速航空宇宙コンポーネント向けの高精度 FDM 3D プリントによるラピッド プロトタイピング

FDM-3D-Printing-for-Supersonic-Aerospace-Components

FDM 3D プリンティングは、特に音より速く飛行できる飛行機の構築に関して、航空宇宙ビジネスに波紋を広げています。Boom Supersonic は、この XB-1 を披露しました。 -1 は、間もなく製造される超音速旅客機のプロトタイプです。

この飛行機が注目に値するのは、FDM 3D プリンティングを使用しており、宇宙グレードの材料の長いフィラメントを加熱して蒸着し、超音速用の高い強度対重量比を備えたエンジン部品やその他の複雑な航空宇宙部品を正確に製造できることです。飛行。

ブーム スーパーソニックは積層造形を使用して、独特の形状の製品を製造できるため、航空機の性能が向上し、コストと製造時間が短縮される可能性があります。この重要な開発は、3 次元印刷が飛行ルールを変更し、音速の超過をより容易かつ便利にしていることを示しています。

4. NASA におけるレーザー溶解技術によるラピッドプロトタイピング

3D Printed NASA Rocket Engine Nozzles

NASA のマーシャル宇宙飛行センターは、宇宙技術の最先端を行っており、レーザー溶解を使用して宇宙エンジン用の複雑な金属モデルを作成しています。この最先端の製造プロセスは、強力なレーザーを使用して溶解し接合しています。金属粉末を一度に 1 層ずつ形成するため、非常に正確で複雑な部品を作成することができます。

NASA は、ロケット エンジンの一部であるインジェクターの 3D プリントに成功しました。この部品は、標準的な方法では製造が難しい非常に複雑な冷却チャネルを備えているため、ロケット エンジン内の高温と高圧を制御するために非常に重要です。 。

NASA は、レーザー溶融技術を使用して、新しい設計のプロトタイプを迅速に製造し、テストできるようになりました。これにより、ロケットの製造に必要な時間が短縮され、エンジニアはエンジンを製造するための新しい方法を得ることができます。将来の宇宙探査と技術進歩の可能性。

5. ヘリコプターの 3D プリント航空宇宙コンポーネントのラピッド プロトタイピング

3D printed helicopter door handles

英国に本拠を置くレニショーは、有名な航空会社 Hyde Aero Products と提携して、ヘリコプター部品の製造に 3D プリンティングがどのように使用できるかを研究しました。これが Hyde Aero Products です。はこの関係で初めて積層造形に挑戦しており、その課題は 2 種類の飛行機のドア ハンドルを作成することです。

レニショーとハイド・エアロ・プロダクツは、3D プリントを使用してこれらのヘリコプター部品をより使いやすく、より長持ちさせたいと考えています。3D プリントは複雑な幾何学的形状を簡単に作成できることで知られており、3D プリントによるドアハンドルの作成が容易になると考えられています。チームやパイロットのニーズに合わせて作成できます。

このプロジェクトは、航空業界における 3D プリンティングの利用における大きな前進であり、将来的にはよりパーソナライズされた有用な航空機部品の開発につながる可能性があり、飛行中の 3D プリンティングの使用がさらに増える可能性があります。たとえば、生産コストを削減し、新しい飛行機の設計をより早く考案できるようになります。

6. UAV 機体構造製造のラピッドプロトタイピング

3d printed drone fuselage structure

ラピッドプロトタイピングは、無人航空機 (UAV) のスキルを向上させるための重要な部分であり、ドローンは監視、荷物の配送、科学研究などにますます使用されています。そのため、より良いものを求めるニーズが数多くあります。より多くの重量を運ぶことができるデザイン。

ラピッド プロトタイピング サービスにより、企業は複雑な機体構造を迅速に開発およびテストできるようになり、航空画像処理のスタートアップ企業は、すぐに 3D プリントを使用して、より優れたエアフロー設計と追加のカメラを備えた新しいドローンの機体プロトタイプを作成しました。

この技術により、設計が迅速化され、実世界の飛行データを使用してテストを繰り返して設計を強化できるようになり、同時に、より優れた、より有用なドローンを迅速に開発できるようになりました。ラピッド プロトタイピングの概念は、幅広い業界の進歩を促進します。

航空宇宙におけるラピッドプロトタイピングの将来の展望と課題

Future-Prospects-and-Challenges-of-Rapid-Prototyping

新しい材料と 3D での構築方法が改善され、ラピッド プロトタイピングが改善されているため、航空用途での使用は興味深いものになる可能性があります。

ただし、より高い精度、より短い製造時間、および現在の製造と連携する能力には依然として問題があります。これらの問題を解決するには、さらに研究開発を行い、ビジネス界、学者、規制当局が協力する必要があります。

将来的には、ラピッド プロトタイピングはより多くのプロジェクトを処理でき、より長く持続し、航空宇宙ビジネスの特定のニーズをより適切に満たすことができるようになります。企業は、ラピッド プロトタイピング テクノロジの使用方法を知っている人材を教育やトレーニングに投入する必要があります。

結論

要約すると、高速プロトタイピング技術は、航空機において複雑で高性能な部品を製造するために非常に重要であり、技術の向上に伴い、将来の研究や用途に大きな影響を及ぼし、設計、製造、製品開発に役立ちます。旅行はビジネスのニーズに合わせてより柔軟になるでしょう。

よくある質問

1. 製品開発において最適化が重要なのはなぜですか?

最適化には、製造や設計などのさまざまなプロセスの効率と有効性を最大化することが含まれます。運用を最適化することで、企業はコストを削減し、品質を向上させ、全体的なパフォーマンスを向上させることができます。

2. 時間のかかる製造プロセスに関連する一般的な課題にはどのようなものがありますか?

時間のかかる製造プロセスは、生産スケジュールの延長、製品納品の遅延、運用コストの増加につながる可能性があり、業務を合理化するには非効率を特定して対処することが不可欠です。

3. サプライヤーは製造サプライチェーンにおいてどのような役割を果たしますか?

サプライヤーは製造会社に原材料、コンポーネント、またはサービスを提供し、品質基準を維持し、生産期限を守るためには、適切なサプライヤーを選択することが重要な役割を果たします。

4. 設計ソフトウェアは、製品開発における設計上の欠陥を特定して修正するのにどのように役立ちますか?

CAD (コンピューター支援設計) などの設計ソフトウェアを使用すると、設計者は生産前に製品を視覚化してシミュレーションできるため、開発プロセスの早い段階で設計の欠陥を特定して修正でき、コストのかかるエラーを最小限に抑えることができます。

5. 製造における材料の選択では、どのような要素を考慮して材料を選択する必要がありますか?

材料の選択は、製品の設計と製造における重要な決定であり、機械的特性、コスト、入手可能性、環境への影響などの要素を考慮する必要があります。

参考文献

1. Progress of titanium alloy laser direct molding and other technologies in aerospace applications – 3D Printing News. (n.d.). https://www.mohou.com/articles/article-6421.html

2. Brief analysis of rapid prototyping technology applications in the field of aerospace – Baidu Wenku. (n.d.). https://wenku.baidu.com/view/f39c35c1aa00b52acfc7ca5f.html?_wkts_=1717740183109

3. Four Application Cases of Platts 3D Printing Technology in Aerospace – Application Demonstration – Additive Manufacturing Professional Committee of China Association of Productivity Promotion Centers. (n.d.). https://www.cnzczz.com/mobile/index.php?m=mobile&c=index&a=show&catid=30&id=123

4. Airplanes and rockets, everything can be 3D printed? _The Paper. (n.d.). https://www.thepaper.cn/newsDetail_forward_7523212

免責事項

XMAKE のプラットフォームの記事は情報提供を目的としており、デジタル製造における当社の専門知識を反映しています。ただし、一部の情報は変更される可能性がありますので、XMAKE は特定のアプリケーションについては責任を負いません。このコンテンツについては、ご理解と遵守をお願いいたします。