風力発電ブレードの製造:3Dプリンター技術による革新 | XMAKE

  • 2024/07/23

2024年現在、世界の風力発電の設備容量は約940ギガワットに達しています。その中で、日本の風力発電の設備容量は約5.5ギガワットに達し、全電力供給の約1.5%を占めています。近年、日本政府は2030年までに風力発電の設備容量を20ギガワットに拡大することを目標に掲げ、特に洋上風力発電の導入を積極的に進めています。この成長を支える重要な要素は、3Dプリンター技術の進歩によって風力発電のブレードなどの部品を製造することです。

 

本記事では、3Dプリンターを活用した風力発電ブレードの製造に関する最新の技術開発について詳しくご紹介します。革新的な3Dプリンター技術は、より効率的で環境に優しい風力発電ブレードの生産を可能にし、日本の再生可能エネルギーの未来に大きな影響を与えることが期待されています。

 

XMAKE_JP_3d-printing-Wind-Turbine-Blade_Featured-Image.webp

 

従来の風力発電ブレードの製造工程及びその制限

従来の風力発電ブレードは、ブレードの形状に合わせて作られたモールドに、複合材料の繊維シートと樹脂を順番に積層していきます。真空バッグ法やオートクレーブ法などの手法を使って、繊維と樹脂を一体化させながら成形していきます。

 

成形されたブレードの内部構造を補強するために、スパー(主骨材)やリブなどの補強部品を取り付けます。さらに表面の仕上げ加工を行い、最終的な製品形状を完成させます。

 

この従来の方法にはいくつかの制限があります。まず、金型の製作と変更が高コストで時間がかかるため、新しいデザインの試行が難しいです。また、金型に依存するため、ブレードの形状に複雑な内部構造を持たせることが困難で、設計の自由度が制約されます。

 

さらに、材料の無駄が多く、材料特性を特定の部分で最適化することが難しいです。製造設備が大型であり、輸送や設置場所の制限もあります。最後に、製造過程で発生する揮発性有機化合物(VOC)などの環境および健康への影響も問題となります。

 

これらの課題に対して、3Dプリンターを活用した新しい製造方法が注目されているのです。3Dプリンターを使えば、より自由度の高い設計と迅速な製造が可能になります。

XMAKE_JP_3d-printing-Wind-Turbine-Blade-1.webp

3Dプリンティングによる羽根製造のメリット

  • コスト削減: 3Dプリンティングは、必要な部分だけに材料を使用するため、無駄が少なく、コストを抑えることができます。特に試作段階や少量生産において、従来の製造方法よりもコスト効率が高くなります。

 

  • 設計の柔軟性: 従来の製造方法では難しい複雑な形状や内部構造を簡単に作成できます。これにより、羽根の空力特性や強度を最適化することが可能です。デザインの変更が必要な場合、3Dプリンターを使用すれば簡単かつ迅速に対応できます。

 

  • 製造時間の短縮: 3Dプリンティングは一度に一体の部品を成形することができるため、複数の部品を組み立てる手間が省け、製造時間が大幅に短縮されます。

 

  • 環境への配慮: 3Dプリンティングは、必要な部分だけに材料を使用するため、製造過程で発生する廃棄物が少なくなります。しかも、 3Dプリンティングで使用される材料の中には、リサイクル可能なものや環境に優しい材料が含まれており、サステナビリティに貢献します。

 

  • 現地製造の可能性: 風力発電所の近くで羽根を製造することが可能となり、輸送コストや輸送中のダメージを減らすことができます。

 

  • 品質と性能の向上: 3Dプリンティングは高い精度で部品を製造できるため、羽根の品質と性能が向上します。 3Dプリンティングでは材料の特性を最適化することができ、より強度が高く、耐久性のある羽根を作ることができます。

XMAKE_JP_3d-printing-Wind-Turbine-Blade_02.webp

 

3Dプリンターを活用した風車ブレードの進化

1.風力発電ブレードの新しい形状や構造の探索

風車のブレードデザインが進化しています。ゼネラル・エレクトリック(GE)は、自然界の優れたデザインからインスパイアを受け、例えば鷲の翼を模したブレードを開発しました。これにより、空気の流れをより効率的に利用でき、発電効率が大幅に向上しています。

 

さらに、GEは3Dプリンター技術を活用して、ブレード内部にハニカム構造を組み込んでいます。この設計は軽量でありながら非常に強度が高く、材料の使用を最小限に抑えつつ、強度を確保しています。

 

シーメンスガメサ・リニューアブル・エナジーも革新的なアプローチを取っています。彼らはトポロジー最適化という技術を使い、ブレードの設計を最適化しています。これにより、必要な強度を保ちながら、特定の部分で材料を削減し、全体の重量を軽くすることが可能となりました。結果として、従来の設計よりも材料使用量を約20%減少させることに成功しています。

XMAKE_JP_3d-printing-Wind-Turbine-Blade_03.webp

2. 風力発電ブレードの軽量化と強度の向上

風力発電ブレードの製造技術は新しい方法によって、従来のブレードよりも軽量で強靭な製品が作られるようになってきています。風力発電分野の大手メーカーであるベスタスは、カーボンファイバー複合材料をブレードに採用しています。カーボンファイバーは軽量性、高強度、耐久性などの特徴から、ブレードを大幅に軽量化できます。その結果、ブレードをより長くすることができ、発電効率が向上します。

 

また、GEのリニューアブル・エナジー事業であるLM Wind Powerは、ブレードの素材を巧みに使い分けています。ブレードの基部には高強度の材料を、先端部分には軽量な材料を使用する仕組みになることで、全体の強度と耐久性を確保しつつ、重量を減らしています。このアプローチにより、ブレードのパフォーマンスが向上し、長持ちするようになっています。

XMAKE_JP_3d-printing-Wind-Turbine-Blade_04.webp

3.風力発電ブレードの空力性能の最適化

シーメンスは、CFDシミュレーションを駆使してブレードの空力特性を細部まで解析し、最適なエアフォイル形状を選定しています。この技術により、風をより効果的に捕らえ、ブレードの発電効率を最大化。シーメンスの最新ブレードは、一般の設計に比べて約15%の効率向上を実現しています。

 

一方、MHIベスタスはブレードの翼端にウィングレットを取り入れ、翼端渦の発生を抑制。これにより、空力効率が向上し、ブレードの耐久性も強化されています。ウィングレットの導入により、全体的なパフォーマンスが約10%向上しています。

 

ノルデックス(ヨーロッパ)は、風の条件に応じてブレードの形状をリアルタイムで調整するアダプティブデザインを採用。この技術により、様々な風速や風向きに最適な形状を維持し、発電効率を最大化。ノルデックスのブレードは、従来の固定形状ブレードに比べて、約20%の効率向上を達成し、発電量アップを実現しています。

XMAKE_JP_3d-printing-Wind-Turbine-Blade_05.webp

 

3Dプリントによる風力発電ブレードの実用化事例

1. 風力発電における先進企業の取り組み

風力発電業界で3Dプリント技術が注目を集めています。先進企業は、この技術を用いて風力発電ブレードの設計と製造に革命を起こしています。

 

例えば、GEは3Dプリントで製造したブレードの内部構造を最適化し、軽量かつ強靭なブレードを実現しました。この革新的なアプローチにより、ブレードの全体的な性能が向上し、発電効率が大幅に改善されています。

 

また、オランダは、3Dプリントで製造した巨大な風力発電ブレードを使用して、従来の方法では不可能だった複雑な形状を実現しました。これにより、風の流れをより効率的に利用し、発電能力の向上とコスト削減を両立しています。

 

さらに、シーメンスゲームサは、3Dプリント技術を活用してブレードの部品を現場で迅速に製造し、メンテナンスや修理の効率を高めています。これにより、ダウンタイムが短縮され、運用コストの削減が実現しています。

 

これらの取り組みは、風力発電の未来を変える可能性を秘めており、持続可能なエネルギーの推進に大きく貢献しています。

XMAKE_JP_ge-Wind-Turbine-Blade.webp

2. 風力発電ブレードの実証実験の成果

最新の実験では、3Dプリントで製造したブレードが従来のブレードよりも約20%軽量で、強度も向上。これにより、風力発電機の発電効率が顕著に改善され、全体的な性能が向上しました。特に、複雑な内部構造が可能となり、風の流れをより効率的に利用できることが確認され、コスト削減とメンテナンスの効率化にも寄与しています。

この革新は、風力発電の未来を大きく変える可能性を秘めています。

XMAKE_JP_Wind-Turbine-Blade-lab.webp

 

まとめ

最新の実証実験では、3Dプリンターで製造した風力発電ブレードが、従来の技術に比べて約20%軽量化され、強度も向上。これにより、発電効率が大幅に改善され、風の流れを最大限に活用することが可能になりました。複雑な内部構造を持つブレードの製造も実現し、コスト削減とメンテナンスの効率化が進んでいます。この技術革新により、風力発電の未来が大きく変わることが期待されています。

 

XMAKEでは、最先端の3Dプリンターサービスを提供し、風力発電ブレードの製造をサポートします。どうぞお気軽にお問い合わせください。

 

参考文献

・絵理子田川. (2023, March 22). . . . 業務用3Dプリンターのポータルサイト ShareLab – ShareLab NEWS. https://news.sharelab.jp/cases/other-fields/nrel-211130/

・GE、風力タービンのコンクリート基盤を3Dプリントするための研究用施設を建築. (2022, July 28). 業務用3Dプリンターのポータルサイト ShareLab – ShareLab NEWS. https://news.sharelab.jp/cases/construction/ge-turbine-220516/

GE、風力タービンのコンクリート基盤を3Dプリントするための研究用施設を建築. (2022, July 28). 業務用3Dプリンターのポータルサイト ShareLab – ShareLab NEWS. https://news.sharelab.jp/cases/construction/ge-turbine-220516/ 

今日から新しいプロジェクトを始めましょう

  • アップロードファイルの機密性は確保しています。